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We show that the band spin splitting caused by spin-orbit interaction in crystal structures with no inversion
symmetry is strongly influenced by band anticrossing. The splitting is always enhanced for one of the anti-
crossing bands and suppressed for the other. There are two limiting cases. In the first, the spin splitting is
completely suppressed for one of the bands and doubled for the other. In the second, the absolute value of the
splitting is markedly enhanced for both bands approaching the magnitude of the hybridization gap. We dem-
onstrate these effects in zinc-blende semiconductors with the help of first-principles GW calculations.
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I. INTRODUCTION

In nonmagnetic crystal structures with a center of inver-
sion (e.g., silicon) all electronic band states with a given k
vector are at least doubly degenerate. In the absence of in-
version symmetry (e.g., for GaAs and other zinc-blende
structure materials) this degeneracy is lifted by spin-orbit
interaction over most of the Brillouin zone (BZ). This split-
ting was first discussed in 1955 by Dresselhaus' for the case
of semiconductors with zinc-blende structure, later the dis-
cussion was extended to semiconductors with wurtzite crys-
tal structure>® and two-dimensional (2D) semiconductor
structures with structural inversion asymmetry.*3 It was also
early realized, both experimentally®® and theoretically,’!!
that further lowering of the crystal symmetry by applied
uniaxial stress could transform the magnitude and form of
the splitting. In a more general picture, the band splitting in
all these cases can be viewed as a spin splitting caused by the
action of an effective magnetic field that is created by the
relativistic coupling of the quasiparticle momentum to the
surrounding environment (crystal or structure potential) un-
der certain conditions of low symmetry. From this point of
view, the aforementioned band splittings in semiconductors
are only one demonstration of a more general relativistic
phenomenon. For example, the action of the effective mag-
netic field in magnetic metallic surfaces is to shift the spin-
split bands in opposite directions of the BZ.!2

This relatively small relativistic effect has attracted much
attention since the 1980s, when several experimental deter-
minations of the spin splitting in the vicinity of the zone
center of semiconductors were performed.®!3-1® The effect
was also measured in quantum well structures'®->? and metal
surfaces.!>?32* The interest in this effect is growing because
it is associated with a large number of single-particle and
many-body phenomena that occur in semiconductors and
metals. We mention here the spin relaxation in doped
semiconductors® and semiconductor nanostrucutres,?® tun-
neling anisotropic magnetoresistance in ferromagnet/
semiconductor junctions,?”-?® weak antilocalization in semi-
conductor 2D structures,” quantum spin hall effect,®
spontaneous polarization of  photoelectrons in
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semiconductors,'® and unconventional superconducting pair-
ing in the newly discovered class of noncentrosymmetric
heavy fermionic superconductors®! (see also Ref. 32 and ref-
erences therein).

Theoretically, it is well understood that the effective mag-
netic field depends on the magnitude and orientation of the
quasiparticle momentum and the symmetry of the band
state.?? It is customary to analyze the effect within the frame-
work of the Dresselhaus! and Bychkov-Rashba* approaches.
These involve expansion of the band energies to terms of
third order in the components of k in the vicinity of band
extrema where the band states usually have well-defined
symmetry. However, little is known to this date about the
properties of the relativistic spin splittings far from these
high-symmetry points. The properties of a quasiparticle in an
arbitrary band energy state located at a general point in the
BZ can be strongly influenced by interband coupling and
therefore only multiband calculations with a realistic crystal
potential provide an accurate result in the full BZ. Full zone
calculations were presented in Refs. 11, 33, and 34 and most
recently in Ref. 35. These calculations showed that the mag-
nitude of spin splitting changes wildly throughout the BZ. A
specific region in the vicinity of the [210] direction with
maximum spin splitting of the lowest conduction band was
identified in Ref. 35. The existence of such a region was
generally attributed to interband coupling.3*3

In this work we analyze the spin splitting at band anti-
crossings for an arbitrary point in the BZ. We show that
around k points where bands anticross regions of the BZ
appear where the spin splitting of the anticrossed bands is
largely enhanced or suppressed by spin-mixing band hybrid-
ization. The extent of these regions and the effects of en-
hancement or suppression are discussed in detail within a
two-band model Hamiltonian and the first-principles quasi-
particle self-consistent GW (QSGW) calculations of the en-
ergy bands of GaAs, AlAs, InSb, and CdTe. These calcula-
tions confirm that the maximum splitting of the lowest
conduction band takes place along the [110] directions pro-
vided one stays within the range of validity of the k> approxi-
mation. However, with increasing k the maximum splits into
two when one approaches the regions of anticrossing be-
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tween the first and second conduction bands. The shape of
regions of enhanced spin splitting and the magnitude of en-
hancement differs from material to material. The observed
differences are fully explained with the two-band model
Hamiltonian. The results of this analysis apply to the general
case of relativistic splitting at band anticrossings, whether
this occurs in semiconductors or metals, in three- or two-
dimensional geometry, and are not limited to a specific form
of the effective magnetic field (be it Dresselhaus, Rashba or
strain).

II. COMPUTATIONAL METHOD

The spin-orbit splitting under consideration strongly de-
pends on band parameters such as the energy gap between
the first and second conduction bands and the gap between
the top valence band and the lowest conduction band.'"** In
the local-density approximation (LDA) these gaps are in
large disagreement with experiment. It was shown in Ref. 34
that the strong underestimation of the fundamental gap in
GaAs by LDA leads to a spin splitting parameter that is 14
times bigger than the value predicted from a band structure
that has the correct gap. Therefore, in this work we use the
recently developed QSGW approximation®®3” implemented
in the full potential linear muffin-tin orbital (LMTO)
method.*¥° The method and the results for a variety of ma-
terials are described in great detail in Refs. 34, 36, 37, and
40-43. In the Appendix we describe how this method is ap-
plied here and provide detailed comparison of the calculated
quasiparticle energies with experiment and with accurate em-
pirical methods (EMs) (see Fig. 1 and Table I in the Appen-
dix). The good agreement of calculated band energies with
experimental values at all points of high symmetry in the BZ
indicates that the entire calculated band structure (ground
and excited states) is very close to that of the real materials
throughout the entire BZ. This gives us enough confidence to
calculate the spin-orbit splittings of valence and conduction
bands throughout the entire BZ.

III. RESULTS

We would like first to give a very brief summary of most
important first-principles results relevant to this discussion.
In Figs. 2 and 3 we present the full zone spin splitting for the
first (CB1) and second conduction band (CB2) for four dif-
ferent semiconductors. It is seen that in all cases the spin
splitting of CB1 is maximized in a “banana-shaped” region
close to the [210] direction (InSb shows an additional maxi-
mum at the W point of the BZ). These regions are in one-to-
one correspondence with the regions in the BZ where CB1
and CB2 anticross (see Fig. 11 in the Appendix). The exact
shape and extent of these regions varies from material to
material, CdTe having the widest banana-shaped region and
InSb the thinest. In the same regions the splitting of CB2
does not always experience a maximum. In some cases it is
even suppressed. A similar behavior of the spin splitting at
band anticrossings was also found for the hole bands.

To understand the large enhancement of the spin splitting
for CB1 and CB2 at the points of anticrossing we construct
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FIG. 1. The calculated band structure of GaAs, AlAs, InSb, and
CdTe. For comparison with experimental data at high-symmetry
points in the BZ see Table I in the Appendix. The good agreement
of calculated band energies with experimental values at all points of
high symmetry in the BZ indicates that the entire calculated band
structure (ground and excited states) is very close to that of the real
materials throughout the entire BZ..

the following two-band noninteracting Hamiltonian:
H=HO+HSO+HA’ (1)

where H,, is the spin-diagonal part,

Hy=2 e(K)ciey + 2 &(K)didy, 2)
k k

Hy, is the intraband relativistic effective-field part

Hgo= 2 ci[A(K) - ooy + 2 di[AL(K) - old,,  (3)
k k

and H, is the hybridization of the two bands, which in the
most general case includes a spin-mixing hybridization
(similar to an interband Hg,, term)

Hy= > AK)cide+ 2, ci[A'(K) - o)dy +Hee.,  (4)
k k

where cy=(cy;.cx)) and  dg=(dy;.dy) are the two-
component spinor fields for the first and the second band,
respectively. € ,(Kk) are the band energies for the first and the
second bands, o=(0,,0,,0,) are the components of the
Pauli matrix, vectors A; and A, are the relativistic effective
fields for the first and the second bands, respectively (for
example, AOC[kx(ki—kf),k;(kg—ki),kz(kf—ki)] for the case
of the I'y representation in zinc-blende semiconductors),
A(K) is the magnitude of the spin-diagonal band hybridiza-
tion and A’(K) is the effective vector field responsible for the
spin-mixing band hybridization. In the following we assume
that all spin-mixing vector fields are collinear.

205205-2



FULL-ZONE ANALYSIS OF RELATIVISTIC SPIN...

PHYSICAL REVIEW B 81, 205205 (2010)

TABLE I. Important band energies for AlAs, GaAs, InSb, and CdTe. Experimental data and EM results
are taken from Ref. 47. All energies are given in electron volt. The top of the valence band is set to 0. The
experimental and EM data include effects of electron-phonon interaction, absent in our calculations (see
Table III of Ref. 48). In our calculations we have not included local p, orbitals; as it was shown in Ref. 49,
this can result in a small underestimation of spin-orbit splitting E(I'g,)—E(I'7,) in the heavier compounds.

AlAs GaAs InSb CdTe
Ty QSGW -12.40 —-13.240 -11.32 -9.81
Expt. -13.1 -11.7
EM -12.00 -13.10 -11.70 -11.07
I, QSGW -0.29 -0.34 -0.8 —-0.81
Expt. -0.3 —-0.341 —-0.85 —-0.89 at 293 K
EM -0.30 —-0.341 —-0.85 -0.89
Tg, QSGW 0 0 0 0
Expt.
EM 0 0 0 0
Te. QSGW 3.33 1.52 0.23 1.58
Expt. 3.13 1.52 0.235 1.6l at2 K
EM 2.95 1.52 0.237 1.60
I'7. QSGW 5.45 4.40 3.04 5.19
Expt. 4.72 3.141
EM 4.60 4.72 3.14 5.36
Tg. QSGW 5.48 4.58 3.42 5.5
Expt. 3.533
EM 4.67 4.89 3.42 5.59
Xey QSGW -10.18 —-10.60 -9.2 —-8.84
Expt. -10.75 -9.5 -8.8+0.3
EM -9.56 -10.58 -9.66 -9.11
Xev QSGW -59 -7.14 —-6.39 -4.91
Expt. —-6.70 -6.4 -4.7%0.2
EM -5.63 —6.66 -6.33 -5.05
Xev QSGW -2.58 -3.06 -2.80 -2.52
Expt. -24
EM -2.68 -3.04 -2.64 -2.05
X7, QSGW -2.46 -2.98 -2.64 -2.21
Expt. -2.80 -1.8%+0.2
EM -2.50 -2.89 -2.24 -1.60
Xee QSGW 2.25 1.88 1.41 3.07
Expt. 2.23 2.18 1.79
EM 223 2.03 1.71 3.48
X7, QSGW 3.24 2.26 1.54 3.39
Expt. 2.54
EM 3.84 2.60 1.95 3.94
Lg, QSGW -10.81 —-11.40 -9.87 -9.07
Expt. -11.24 -10.5
EM -10.16 -11.16 -10.24 -9.41
Lg, QSGW —-6.07 -7.02 —-6.11 -5.06
Expt. -6.70
EM -5.35 —6.65 -6.22 —4.86
Lg, QSGW -1.10 —-1.45 -1.57 -1.39
Expt. -1.4
EM -1.49 -1.51 -1.49 -1.18
Lys, QSGW -0.93 -1.24 -1.12 -0.90
Expt. -1.30 -0.9 -0.9+0.3
EM -1.30 -1.30 -0.96 —-0.65
L, QSGW 3.26 1.79 0.82 2.61
Expt. 1.85
EM 2.59 1.82 1.03 2.82
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TABLE 1. (Continued.)
AlAs GaAs InSb CdTe
L, QSGW 5.81 5.34 4.06 5.9
Expt. 4.32
EM 5.68 5.40 3.60 6.18
Lys, QSGW 5.83 541 4.22 6.01
Expt. 4.47
EM 5.74 5.53 3.80 6.37

For an arbitrary point Kk, in the BZ, where we assume
there is an avoided crossing of the two bands, the model
Hamiltonian can be written as

E](k’) —ial A —i(S,
ia; k') id A
H(k')= 5
®’) A -8 k') -im ®)
i&’ A ia2 Gz(k’)

where, € ,(k’) are the band energies for the first and the
second bands if there is no band hybridization (A=4"=0)
and relativistic spin splittings (a;=a,=0). We have intro-
duced k' =|k—Kg| and have assumed that in the vicinity of k,
A5, A and A’ are independent of k. For simplicity we chose
the vectors A, and A to have the simple form (0,y,0). We
have assumed linear isotropic dispersion for the unhybrid-
ized bands by setting €,(k")=ak’ and €,(k')=—bk’. Note that
the symbol a represents the lattice parameter whenever it
appears with (27/a) or (a/27). Then for A= =a;=a,=0
the Hamiltonian describes the crossing bands in Fig. 4(a)
[where we take a=b=1 eV (a/2)]. For a finite value of the
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hybridization parameter A, the Hamiltonian describes the an-
ticrossing bands in Fig. 4(a) that are split at k’=0 by the
hybridization gap of 2A=0.5 eV.

If we turn on the relativistic splittings (for simplicity we
consider a;=a,) we see in Figs. 4(b)-4(d) that in both cases
of no hybridization [Fig. 4(b)] and spin-diagonal hybridiza-
tion [Fig. 4(c)] the bands split by an equal amount due to
relativistic terms. The spin splitting is independent of k and
A. Diagonalization of Hamiltonian (2), at k=0, with A #0,
a) F a,, and & =0, shows that both bands split by an equal
amount of @+ ,. In the unhybridized case (A=0), the first
band splits by 2a; and the second by 2a,. When we choose
a;=a,, it appears as if the spin-diagonal hybridization has
no effect on the spin splitting of the bands. In real materials
it is not unlikely for the two bands to have comparable rela-
tivistic terms. More important, independent of the «;/«, ra-
tio, both bands split by an equal amount which is indepen-
dent of k. Therefore, the spin-diagonal hybridization does not
result in any new interesting behavior of the spin splitting
and certainly does not describe the behavior for the realistic
bands seen in Figs. 2 and 3.
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FIG. 2. (Color online) Contour

plot of the calculated relativistic

splitting of CB1 in one quarter of

the [100]-[010] plane in the BZ
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(the splitting in the other three
quarters looks exactly like the one
shown above, as expected from
the 7, symmetry of the zinc-
blende crystal structure). The axes
are in units of (27/a). The split-
ting is given in electron volt.
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We examine now the case of a finite spin-mixing hybrid-
ization &'. The eigenvalues of such a Hamiltonian for k" =0
and the case when a|=a, are

E.=A%(5+a),

E2t=—Ai(6’—a1)_ (6)

We have two bands separated by the hybridization gap of 2A.
The first band is spin split by (&'+«,;) and the second by
(&' —ay). If &' is much bigger than «; then, the spin splitting
of both bands is approximately equal to 2'. However, as our
following comparison of the model with the ab initio results
will demonstrate, in real materials the spin-mixing hybridiza-
tion can be comparable to the intraband relativistic terms. In
this case, the spin splitting of one band is enhanced and that
of the other is suppressed by the hybridization. In the special
case of &' =a;, the spin splitting of one of the bands is com-
pletely suppressed. In the following we examine the eigen-
values of the model Hamiltonian (5) for different values of
the model parameters and then compare the calculations with
the ab initio results of Figs. 2 and 3.

In Fig. 5 we present the model bands and their spin split-
ting for a;=a,=-0.01 eV, A=0.25 eV, and & =0.04A
=¢;. In this special case when the spin-mixing hybridization
is equal to the intraband relativistic terms, we see that the
spin splitting of one of the bands is completely suppressed at
k=0 while the spin splitting of the other band is doubled.
Here, the suppression occurs for the lower band because we
have chosen a; and «, to be negative (in the opposite case,
the suppression occurs for the upper band). Away from k’
=0 the spin splitting for the lower band is increased with k
while that of the upper band is decreased.

PHYSICAL REVIEW B 81, 205205 (2010)
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In Fig. 6, we show the spin splitting of the lower and
upper band for various strengths of spin-mixing hybridiza-
tion &'. It is seen that when &’ is significantly larger than the
intraband relativistic terms, both bands experience enhance-
ment of spin splitting at the anticrossing point. The enhance-
ment is proportional to the strength of spin-mixing hybrid-
ization &'. The enhanced splitting can be an order of
magnitude bigger than that caused by intraband relativistic
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FIG. 4. (Color online) (a) The crossing bands of the model
Hamiltonian without [brown (gray) dashed line] and with (black
solid line) spin-diagonal hybridization (A=0.25 eV), in the case of
no relativistic spin splitting. (b) The unhybridized bands with rela-
tivistic intraband terms «;=a,=0.01 eV. (c) The bands with spin-
diagonal hybridization (A=0.25 eV) and relativistic intraband
terms a;=a,=0.01 eV; (d) the spin splitting for (b) and (c).
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=b=1eV(a/2m), a;=a,=0.01 eV, A=0.25 eV, and & =0.04A
=a,=0.01 eV.

terms. When the spin-mixing hybridization is equal to the
spin-conserving hybridization (8’ =A), the spin splitting for
both bands is approximately equal to the magnitude of the
hybridization gap.

In Fig. 7, we show the dependence of the enhancement on
the Bloch velocity A~ (dE/ dk)y,, of electrons in the crossing
bands. It emerges that the larger the velocity the smaller the
extension of the effect in k space. As shown in this figure, by
keeping the velocity of one of the bands constant while in-
creasing the velocity of the other, we can achieve a signifi-
cant change in the width of the peak. For a=10 eV(a/2m)
and b=1 eV(a/2m) the peak is very narrow. Then, a tenfold
increase in the velocity of the second band
(b=10 eV(a/2m) has a significant but much smaller effect.
We conclude that the band with the largest velocity deter-
mines the sharpness of the peak in the dependence of the spin
splitting on k.

<
~
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FIG. 6. (Color online) The absolute value of the spin splitting of
the lower (red (gray) dashed line) and upper (solid blue (black) line)
bands for various strengths of spin-mixing interband hybridization.
Here we have chosen a=b=1 eVa/(27), a;=a,=0.01 eV, and
A=0.25 eV.
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FIG. 7. (Color online) Left panel: the absolute value of the spin
splitting of the upper band for different values of coefficients a and
b [given here in units of eV(a/27)]. Right panel: same as left panel
but for the lower band.

It is now interesting to examine the relevance of this
model to the realistic bands that we obtained from our first-
principles calculations. In Fig. 8, we show a cross section of
the two lowest conduction bands and their splitting for
GaAs. This cross section is along the line (k,,0.5,0)(27/a)
and we show only a small interval of about =0.1(27/a)
around the point of anticrossing of the CB1 and CB2 bands.
We urge the reader to identify this interval in the correspond-
ing region in the two-dimensional plots of Figs. 2 and 3. The
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FIG. 8. (Color online) Left panel: cross section of the (a) two
lowest conduction bands and (b) their spin splitting for GaAs cal-
culated from first principles. Here k,=0.5(27/a). Right panel: (c)
the model with parameters (independent of k) a;=a,=0.007 eV,
A=0.18 eV, §=0.3A, a=9.6 eV(2m/a), and b=2.5 eV(2m/a)
(dashed red(gray) lines) reproduces the main features of the bands
calculated from first principles (solid black lines). (d) The model
spin splitting (absolute value) with hybridizations A and & (inde-
pendent of k) (red(gray) dashed lines), and k-dependent hybridiza-
tion A=0.18+ck—c'k> (blue(light gray) dots) are compared to the
spin splitting of CB1 and CB2 of first-principles calculations (solid
black lines).
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spin splitting of both bands is seen to be enhanced at the
anticrossing point at around 0.3(277/a). On the right panel of
Fig. 8 we show the results of fitting the model to the ab initio
bands. It is evident that the simple model reproduces the
main features of the spin-split bands. However, as seen in
Fig. 8(d) we find that the model Hamiltonian with
k-independent hybridization cannot reproduce the peak of
spin splitting, which for the realistic bands is observed at a
finite k£ point away from the anticrossing. We find that this is
reproduced by choosing a k-dependent hybridization with the
simple form A=0.18+ck—c'k>.

Finally, an interesting question is whether in real materials
the spin-mixing hybridization can be as big as the spin-
conserving one. For this, in Fig. 9 we present the lowest
conduction bands and their spin splitting for CdTe along the
same (k,,0.5,0)(277/a) line in the BZ that we presented re-
sults for GaAs above. We see that at k=0.15(27/a), there is
a hybridization gap. The spin splitting of both bands is en-
hanced at this point. The magnitude of the spin splitting is
almost equal to that of the hybridization gap, as is evidenced
by the fact that the spin splitting nearly closes the gap. In
addition, it is seen that the enhancement is maintained for a
large k interval due to the small velocity of the crossing
bands, in full accordance with the predictions of our simple
model. It is interesting that for very narrow bands such ac-
cidental anticrossings will influence the relativistic splitting
in very large regions of the BZ. This may be the case for
noncentrosymmetric heavy fermionic superconductors, such
as CePt;Si, where the entire Fermi-surface (consisting
mainly of narrow 4f bands) experiences a significant relativ-
istic splitting.**

IV. CONCLUSIONS

We have presented a model of relativistic spin splitting at
band anticrossings. We found that the spin splitting of one of
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FIG. 9. (Color online) Cross section of the (a) two lowest con-
duction bands and (b) their spin splitting for CdTe calculated from
first principles. Here k,=0.5(27/a). The spin splitting is approxi-
mately equal to the hybridization gap (the gap is almost closed by
the spin splitting). The very low velocity of the crossing bands
results in a large k interval with enhanced spin splitting.

the bands is enhanced and that of the other suppressed by the
presence of a spin-mixing band hybridization component &'.
The amount of enhancement/suppression is determined by
the magnitude of &’. When ¢’ = a , the splitting for one of
the bands can be completely suppressed. When &' =A the
absolute value of the spin splitting is greatly enhanced for
both bands and becomes similar in magnitude similar to that
of the hybridization gap. This last case is actually realized in
CdTe. The extent of enhancement/suppression in the BZ is
determined by the velocities of the crossing (unhybridized)
bands. The smaller the velocity the wider the extent of the
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FIG. 11. (Color online) The upper two panels show three-dimensional plots of the CBI1 and CB2 dispersion in one quarter of the
[100]-[010] plane from two different viewing angles. The plot on the left side is in the range between 0.0 and 0.5(27/a) for both k, and k.
The plot on the right is for the entire first quarter of the [100]-[010] plane. The lower panel shows the relativistic splitting of CB1 in the same
BZ region. It is seen that the relativistic splitting is greatly enhanced at a banana-shaped line where CB1 and CB2 anticross. One of the lines
starts approximately at (0.3,0.1,0) and ends at a point nearby (1.0,0.5,0) (W point) (the other line is a mirror reflection of this line). In total
there are four such pairs in the entire [ 100]-[010] plane, consistent with the 7; point group of the zinc-blende structure. The enhancement of
spin splitting at k points of band anticrossing is also illustrated in the two-dimenstional plots of Figs. 8 and 9.

effect in the BZ. These findings are supported by the results
of first-principles multiband calculations for four different
semiconductors. We would like to emphasize that in the
model we did not specify the type of spin-orbit splitting or
orbital character of the band, therefore we expect that the
effects described here occur whenever a band anticrossing
takes place under the influence of all types of relativistic
effective fields and can be observed for both electrons and
holes in semiconductors and metals.
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APPENDIX

1. Method: Numerical details and comparison of calculated
quasiparticle energies with experiment

For the semiconductors presented in this paper, the
smoothed LMTO basis includes orbitals with =/, =5.
Two channels of d character were used in the calculations,
where the semicore states (3d for Ga and As, 4d for Cd, In,
Sb, and Te) are added in the form of local orbitals*—an
orbital strictly confined to the augmentation sphere, which

has no envelope function at all. As QSGW gives the self-
consistent solution at the scalar relativistic level, we add the
spin-orbit operator, Hg, as a perturbation (it is not included
in the self-consistency cycle). The QSGW potential is mixed
with LDA in the manner of Refs. 34 and 46. The resulting
band structures for GaAs, AlAs, CdTe, and InSb are pre-
sented in Fig. 1. The band energies at high-symmetry points
are presented in Table I and compared with experimental
data and accurate empirical band calculations. The good
agreement of calculated band energies with experimental
values at all points of high symmetry indicates that the entire
calculated band structure (ground- and excited-state quasi-
particle energies and wave functions) is very close to that of
the real materials throughout the entire BZ.

2. Supplementary data for the relativistic splitting

In Fig. 10 we show the evolution of the spin splitting as
we look into larger parts of the BZ. We can see that whereas
the maximum for the first conduction band is along the [110]
direction for small regions around the I' point, it is shifted
toward the [210] direction as we move away from it.

In Fig. 11 we show the spin splitting together with three-
dimensional plots of CB1 and CB2 bands of GaAs from two
different viewing angles. It is clearly seen that the BZ re-
gions with very high value of CB1 spin splitting are located
close to the k points of CB1 and CB2 anticrossing.
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